The Thermodynamic and Kinetic Limits on the Process of Free Energy Storage by Photosynthetic Systems*

نویسندگان

  • Davor Juretic
  • D. JURETIC
چکیده

where TR (v) is the radiation temperature introduced by Planck2 in order to describe the nonequilibrium radiaHon, and T is the working system temperature. The kinetic arrangements for free energy storage are completely ignored in (1). The simplest known photosynthetic mechanism developed by nature is based on the action of protein bacteriorhodopsin, which was isolated from purple membrane patches of Halobacterium halobium.3 Upon illumination the light absorbing pigment: retinal, goes through the cycle of conformational ,changes concomitant with such changes of the opsin part of bacteriorhodopsin, with net result that protons are ejected from archaebacteria. Since proton -electrochemical gradient is created at the expense of photon free energy bacteriiorhodopsin acts as free energy converter rather than quantum detector like his cousin rhodopsin which is involved in the process of vision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic and Thermodynamic Studies on the Reactivity of Hydroxyl Radicals in Wastewater Treatment by Advanced Oxidation Processes

The removal of dyes from wastewater, is one of the major environmental concerns due to their high color density, and they are toxic at even low concentrations. Adsorption process by advanced oxidation processes (AOPs) has been found to be a more effective method than classical methods for treating dye-containing wastewater. This research, is to investigate the decolorization abilities of az...

متن کامل

Adsorption of Malachite Green from Aqueous Solution by Nanozeolite Clinoptilolite: Equilibrium, Kinetic and Thermodynamic Studies

The object of present study was to examine the adsorption potential of nanozeolite clinoptilolite (CP) for the removal of malachite green (MG) from aqueous phase in a batch equilibrium system. SEM, EDX, XRF, XRD and FT-IR techniques of characterization of zeolite were applied. The effects of initial pH solution, adsorbent dose, temperature, contact time and initial MG concentration on adsorptio...

متن کامل

Synthesize and characterization of Aminosilane functionalized MCM-41 for removal of anionic dye: Kinetic and thermodynamic study

In this study, removal of Acid blue 62 from aqueous solution by mesoporous silicate MCM-41 modified by Aminopropyltriethoxysilane (APTES) composite was studied. Properties of synthesized composite were analyzed and confirmed by SEM, EDX and FTIR. Results show that Langmuir adsorption isotherm has the best compatibility with the results of experiments. Kinetic analysis using pseudo-first-order m...

متن کامل

Synthesize and characterization of Aminosilane functionalized MCM-41 for removal of anionic dye: Kinetic and thermodynamic study

In this study, removal of Acid blue 62 from aqueous solution by mesoporous silicate MCM-41 modified by Aminopropyltriethoxysilane (APTES) composite was studied. Properties of synthesized composite were analyzed and confirmed by SEM, EDX and FTIR. Results show that Langmuir adsorption isotherm has the best compatibility with the results of experiments. Kinetic analysis using pseudo-first-order m...

متن کامل

Kinetic and thermodynamic studies of the removal of murexide from aqueous solutions on to activated carbon

The objective of this study was to assess the adsorption potential of activated carbon (AC) asan adsorbent for the removal of Murexide (Mu) from aqueous solutions. The influence of variablesparameters including pH, amount of adsorbent, sieve size of adsorbent, temperature and contact timeon Mu removal was studied. Following optimization of variables, the relation between concentrations ofdye re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018